Tensor products of prime-power groups

Graham Ellis*, Aidan McDermott
Department of Mathematics. University College Galway, Galway, Ireland
Communicated by C. Kassel; received 7 October 1996; received in revised form 28 February 1997

Abstract

We give a bound for the order of the nonabelian tensor product of two prime-power groups. From this we obtain bounds on the third homotopy group of a union of two spaces. We illustrate our bound by using a GAP computer program to determine the order of the nonabelian tensor product $G \otimes H$ for all normal subgroups G and H of the quaternion group of order 32. ©C 1998 Elsevier Science B.V. All rights reserved.

AMS Classification: $20 \mathrm{J99}$

1. Introduction

Let G be a finite p-group and H a finite q-group where the primes p and q are not necessarily distinct. Let there be an action $(g, h) \mapsto{ }^{g} h$ of G on H, and an action $(h, g) \mapsto^{h} g$ of H on G. The group G is assumed to act on itself by conjugation $\left(g, g^{\prime}\right) \mapsto{ }^{g} g^{\prime}=g g^{\prime} g^{-1}$, and H is assumed to act on itself similarly. Let us suppose that the various actions are compatible in the sense that

$$
\begin{aligned}
& { }^{(g h)} g^{\prime}={ }^{g}\left({ }^{h}\left(g^{-1} g^{\prime}\right)\right), \\
& \left({ }^{h} g\right) \\
& h^{\prime}={ }^{h}\left({ }^{g}\left({ }^{h^{-1}} h^{\prime}\right)\right),
\end{aligned}
$$

for $g, g^{\prime} \in G, h, h^{\prime} \in H$.
The tensor product $G \otimes H$ was defined in [3] as the group generated by symbols $g \otimes h$ (for $g \in G, h \in H$), subject to the relations

$$
\begin{aligned}
& g g^{\prime} \otimes h=\left({ }^{g} g^{\prime} \otimes{ }^{g} h\right)(g \otimes h), \\
& g \otimes h h^{\prime}=(g \otimes h)\left({ }^{h} g \otimes{ }^{h} h^{\prime}\right),
\end{aligned}
$$

[^0]for $g, g^{\prime} \in G, h, h^{\prime} \in H$. Homomorphisms
\[

$$
\begin{array}{ll}
\lambda: G \otimes H \rightarrow G, & g \otimes h \mapsto g^{h} g^{-1}, \\
\mu: G \otimes H \rightarrow H, & g \otimes h \mapsto{ }^{g} h h^{-1},
\end{array}
$$
\]

and an isomorphism

$$
G \otimes H \stackrel{\cong}{\cong} H \otimes G, \quad g \otimes h \mapsto h \otimes g,
$$

were established in [3].
It was shown in [5] that $G \otimes H$ is a finite $p q$-group. In Section 2 we give a bound for the order of $G \otimes H$. This bound is illustrated in Section 4, where we use a GAP computer program to determine $|G \otimes H|$ for all normal subgroups G, H of the quaternion group of order 32. In Section 3 we consider a union of $C W$-spaces $X=A \cup B$; we give a bound on $\pi_{3} X$ in terms of the homotopy groups of A, B and $A \cap B$, and a certain tensor product.

2. Group-theoretic results

If there exists a group E containing both G and H as normal subgroups, then conjugation in E gives rise to compatible actions. In this case we let $G H$ denote the subgroup of E gencrated by G and H, and we define

$$
{ }_{H} G=\left\{g \in G \text { : there exists an } h \in H \text { such that } g h^{-1} \in Z(G H)\right\} .
$$

Note that ${ }_{H} G$ is a normal subgroup of G, and that ${ }_{H} G=G$ if $G \subseteq H$.
We let ΦG denote the Frattini subgroup $[G, G] G^{p}$ of G. Thus, G is a d-generator group if and only if $|G / \Phi G|=p^{d}$.

Proposition 1. Suppose that G and H are normal subgroups of E, and that actions arise from conjugation in E.
(i) If $p \neq q$ then $|G \otimes H|=1$.
(ii) Suppose that $p=q$ and that G is a d-generator group of order p^{n}, H is a d^{\prime}-generator group of order $p^{n^{\prime}}$, and $\left.\right|_{H} G\left|/\left.\right|_{H} G \cap \Phi G\right|=p^{k}$. Then

$$
|G \otimes H| \leq p^{n n^{\prime}-(k+n-d)\left(n^{\prime}-d^{\prime}\right)}
$$

Proof. (i) Suppose $p \neq q$. Then $[G, H]$ is trivial since it lies in the intersection of G with H. Proposition 2.4 in [3] thus implies an isomorphism

$$
G \otimes H \cong G^{a b} \otimes_{\mathbb{Z}} H^{a b}
$$

where the right-hand side denotes the usual tensor product of abelian groups. Clearly $G^{a b} \otimes_{\mathbb{Z}} H^{a b}$ is trivial.
(ii) Suppose $p=q$. We shall consider two cases.

Case 1: Suppose $[G, H]=1$, and let $H^{a b} \cong C_{1} \times C_{2} \times \cdots \times C_{d^{\prime}}$, where C_{i} denotes a cyclic p-group. Proposition 2.4 in [3] yields

$$
G \otimes H \cong G^{a b} \otimes H^{a b} \cong\left(G^{a b} \otimes C_{1}\right) \times\left(G^{a b} \otimes C_{2}\right) \times \cdots \times\left(G^{a b} \otimes C_{d^{\prime}}\right)
$$

Therefore,

$$
\begin{aligned}
|G \otimes H| & \leq\left|G^{a b} \otimes C_{1}\right| \times \cdots \times\left|G^{a b} \otimes C_{d^{\prime}}\right| \\
& \leq\left|G^{a b}\right| d^{d^{\prime}} \\
& \leq|G|^{d^{\prime}} \\
& =p^{n d^{\prime}}
\end{aligned}
$$

Since $k \leq d$ we have

$$
\begin{aligned}
|G \otimes H| & \leq p^{n d^{\prime}} \\
& =p^{n n^{\prime}-(d+n-d)\left(n^{\prime}-d^{\prime}\right)} \\
& \leq p^{n n^{\prime}-(k+n-d)\left(n^{\prime}-d^{\prime}\right)}
\end{aligned}
$$

as required.
Case 2: Suppose $[G, H] \neq 1$. Let $l=n+n^{\prime}$ with $n \neq 0, n^{\prime} \neq 0$. As an inductive hypothesis, suppose that the proposition has been proved for all p-groups G^{\prime}, H^{\prime} with $\left|G^{\prime}\right|\left|H^{\prime}\right| \leq p^{t}$. This hypothesis is certainly true for $t=2$, since $\left|G^{\prime}\right|\left|H^{\prime}\right| \leq p^{2}$ implies that either $G^{\prime} \cap H^{\prime}=1$ or $G^{\prime}=H^{\prime}=C_{p}$, and consequently, that $\left[G^{\prime}, H^{\prime}\right]=1$. Assume the hypothesis true for $t<l$.

A simple exercise, using the class equation, shows that any non-trivial normal subgroup of a finite p-group intersects the centre non-trivially. There is thus a central subgroup N of $G H$ such that $N \subseteq[G, H]$ and $|N|=p$. Proposition 9 in [2] easily extends to yield the following lemma.

Lemma. Any central subgroup Z of $G H$ which lies in the intersection $G \cap H$ gives rise to an exact sequence

$$
(G \otimes Z) \times(Z \otimes H) \rightarrow G \otimes H \rightarrow(G / Z) \otimes(H / Z) \rightarrow 1
$$

The inclusion $N \subseteq[G, H]$ implies that the image of the canonical homomorphism ${ }_{H} G \otimes N \rightarrow G \otimes H$ is contained in the image of the canonical homomorphism $N \otimes H \rightarrow$ $G \otimes H$. (To see this let $g \in_{H} G$ and let $\tau=\left[g_{1}, h_{1}\right] \ldots\left[g_{t}, h_{t}\right]$ be an element in N. Let $\tilde{\tau}$ be an element in $G \otimes H$ which is mapped to τ by λ. By the definition of ${ }_{H} G$ there exists an element $h \in H$ such that ${ }^{h} g_{i}={ }^{g} g_{i}$ and ${ }^{h} h_{i}={ }^{g} h_{i}$ for all i. Thus ${ }^{h} \tilde{\tau}={ }^{g} \tilde{\tau}$. Theorem 2.3(d) in [3] implies that, in the tensor product $G \otimes H$, we have

$$
\left.g \otimes \tau={ }^{g} \tilde{\tau} \tilde{\tau}^{-1}={ }^{h} \tilde{\tau} \tilde{\tau}^{-1}=(\tau \otimes h)^{-1} .\right)
$$

The lemma with $Z=N$, together with our result on the image of ${ }_{H} G \otimes N \rightarrow G \otimes H$, imply an exact sequence

$$
(G / H G \otimes N) \times(N \otimes H) \rightarrow G \otimes H \rightarrow(G / N) \otimes(H / N) \rightarrow 1
$$

This sequence and the isomorphism $\left(G /{ }_{H} G\right) \otimes N \cong G /\left({ }_{H} G \Phi G\right)$ yield

$$
\begin{aligned}
|G \otimes H| & \leq|(G / N) \otimes(H / N)||(G / H G) \otimes N||N \otimes H| \\
& =|(G / N) \otimes(H / N)|\left|G /\left({ }_{H} G \Phi G\right)\right||H / \Phi H| \\
& =|(G / N) \otimes(H / N)| p^{d-k} p^{d^{\prime}} \\
& \leq p^{(n-1)\left(n^{\prime}-1\right)-(k+n-d-1)\left(n^{\prime}-d^{\prime}-1\right)+d-k+d^{\prime}} \\
& =p^{n n^{\prime}-(k+n-d)\left(n^{\prime}-d^{\prime}\right)}
\end{aligned}
$$

as required.
When $G=H$, Proposition 1(ii) improves on a bound given by Rocco [12] (see also [6]).

Not all compatible actions arise from conjugation in a group E containing G and H. Suppose, for instance, that G and H are cyclic groups of order 8, with generators x and y. Compatible actions arise by defining ${ }^{x} y=y^{-1},{ }^{y} x=x^{-1}$. These actions do not arise from conjugation, for if they did we would have $x^{2}=x^{y} x^{-1}={ }^{x} y y^{-1}=y^{-2}$, and thus the contradiction $x^{2}={ }^{y} x^{2}=x^{-2}$.

So we now work towards a version of Proposition 1 for arbitrary compatible actions. Let us use the action of H on G to form the semi-direct product $G \rtimes H$, in which elements are multiplied according to the rule

$$
(g, h) \cdot\left(g^{\prime}, h^{\prime}\right)=\left(g^{h} g^{\prime}, h h^{\prime}\right)
$$

for $g, g^{\prime} \in G, h, h^{\prime} \in H$. Consider the subgroup P of this semi-direct product generated by the elements $\left(g^{h} g^{-1}, h^{g} h^{-1}\right)$ for $g \in G, h \in H$. It is readily verified (or see, for instance, [1]) that P is a normal subgroup of $G \rtimes H$. Following [1], set $G \circ H=(G \rtimes H) / P$. The canonical homomorphisms $G \rightarrow G \rtimes H, g \mapsto(g, 1)$ and $H \rightarrow G \rtimes H, h \mapsto(1, h)$ induce homomorphisms

$$
\begin{aligned}
& \partial: G \rightarrow G \circ H \\
& \delta: H \rightarrow G \circ H .
\end{aligned}
$$

One readily verifies (or see [1]) that ∂ and δ are crossed modules. It follows that ker ∂ is a central subgroup of G which is stable under the action of H, and thus that ker ∂ is a $\mathbb{Z} H$-module. Similarly, $k e r \delta$ is a $\mathbb{Z} G$-module.

Let $[H, \text { Ker } \partial]_{G}$ be that central subgroup of G generated by the elements ${ }^{h} x x^{-1}$ for $h \in H, x \in \operatorname{ker} \partial$. Note that $[H, \operatorname{ker} \partial]_{G}$ is a $\mathbb{Z} H$-module. We similarly have a $\mathbb{Z} G$-module $[G, \text { ker } \delta]_{H}$.

Let us denote by $H_{1}(G, A)$ the first Eilenberg-Mac Lane homology of G with coefficients in a G-modulc A.

Theorem 2. (i) If $p \neq q$ then $G \otimes H \cong[G, \text { ker } \delta]_{H} \times[H, \text { ker } \partial]_{G}$, and consequently,

$$
|G \otimes H|=\left|[G, \operatorname{ker} \delta]_{H}\right|\left|[H, \operatorname{ker} \partial]_{G}\right| .
$$

(ii) Suppose $p=q$, and that G is a d-generator group of order p^{n}, H is a d^{\prime} generator group of order $p^{n^{\prime}}$, and $\left.\right|_{H} G\left|/\left|\left.\right|_{H} G \cap \Phi G\right|=p^{k}\right.$. Then

$$
|G \otimes H| \leq K p^{n n^{\prime}-(k+n-u)\left(n^{\prime}-u^{\prime}\right)}
$$

where $K=\mid H_{1}(G$, ker $\delta)| | H_{1}(H$, ker $\partial)| |[H, \text { ker } \partial]_{G}| |[G, \text { ker } \delta]_{H} \mid$.
Proof. Proposition 7 in [2] extends to yield the following generalisation of the lemma in our proof of Proposition 1.

Lemma. Any pair of crossed modules $\partial: G \rightarrow Q$ and $\delta: H \rightarrow Q$ yields an exact sequence

$$
\begin{equation*}
(G \otimes \operatorname{ker} \delta) \times(\operatorname{ker} \partial \otimes H) \rightarrow G \otimes H \rightarrow \bar{G} \otimes \vec{H} \rightarrow 1 \tag{*}
\end{equation*}
$$

where $\bar{G}=\partial G, \bar{H}=\delta H$ are the images of G, H in Q.
Taking $Q=G \circ H$, and ∂, δ to be as in the theorem, note that \bar{G}, \bar{H} are both normal in $G \circ H$, and so they act on each other by conjugation. Corollary 3.3 in [10] provides an exact sequence

$$
\begin{equation*}
1 \rightarrow H_{1}(G, \operatorname{ker} \delta) \rightarrow G \otimes \operatorname{ker} \delta \xrightarrow{\mu}[G, \operatorname{ker} \delta]_{H} \rightarrow 1 \tag{**}
\end{equation*}
$$

(i) Suppose $p \neq q$. Proposition 1 (i) tells us that $\bar{G} \otimes \bar{H}=1$. Since G is a p-group and $\operatorname{ker} \delta$ is a q-group, we have $H_{1}(G, \operatorname{ker} \delta)=1$ (see, for instance, [11]). Sequence (**) implies

$$
G \otimes \operatorname{ker} \delta \cong[G, \operatorname{ker} \delta]_{H}
$$

Similarly,

$$
\operatorname{ker} \partial \otimes H \cong[I I, \operatorname{ker} \partial]_{G}
$$

Since the composite homomorphism

$$
[G, \operatorname{ker} \delta]_{H} \xrightarrow{\cong} G \otimes \operatorname{ker} \delta \rightarrow G \otimes H \rightarrow H
$$

sends $[G, \text { ker } \delta]_{H}$ injectively into H, the q-group [G, ker $\left.\delta\right]_{H}$ embeds into $G \otimes H$. Similarly, the p-group $[H, \operatorname{ker} \partial]_{G}$ embeds into $G \otimes H$. Since $p \neq q$, sequence ($*$) implies the required isomorphism

$$
[G, \operatorname{ker} \delta]_{H} \times[H, \operatorname{ker} \partial]_{G} \cong G \otimes H
$$

(ii) Suppose $p=q$. The required homomorphism follows from Proposition 1(ii) and the sequences $(*)$ and $(* *)$.
(Note that the isomorphism of Theorem 2(i), in fact, holds for any two finite groups G, H with coprime exponents.)
Let N be a normal subgroup in G. Using conjugation actions, we can form the tensor product $N \otimes G$. As explained in [3], there is an action of the group G on the tensor product $N \otimes G$ given by

$$
{ }^{g}\left(n \otimes g^{\prime}\right)=\left({ }^{g} n \otimes{ }^{g} g^{\prime}\right)
$$

for $g, g^{\prime} \in G, n \in N$. Conversely, an element $\tau \in N \otimes G$ acts on $g \in G$ by ${ }^{\tau} g=$ $(\mu \tau) g(\mu \tau)^{-1}$. These actions are compatible and we can use them to form the tensor product $(N \otimes G) \otimes G$. This construction can be iterated to form the tensor product

$$
N \otimes^{c+1} G=(((N \otimes G) \otimes G) \cdots \otimes G)
$$

of N with c copies of G. (In this notation, $N \otimes^{3} G=(N \otimes G) \otimes G$.) Let us define a central series by

$$
\begin{aligned}
& \gamma_{1}(N, G)=N, \\
& \gamma_{i+1}(N, G)=\left[\gamma_{i}(N, G), G\right] .
\end{aligned}
$$

There is a canonical surjection $\mu: N \otimes^{c} G \rightarrow \gamma_{c}(N, G)$ which sends a tensor $\left(() n \otimes g_{1}\right) \otimes$ $\left.g_{2}\right) \cdots \otimes g_{c}$) to the commutator $\left[\left[\left[n, g_{1}\right], g_{2}\right], \ldots, g_{c}\right]$.

The following corollary is the basis for the main results of $[4,8]$. It is also essential to the proof of Theorem 2 in [7].

Corollary 3. Let N be a normal subgroup of a d-generator p-group G. Suppose that $\left|\gamma_{i}(N, G)\right|=p^{m_{i}}$ for $i=1,2, \ldots$ Then, for any $c \geq 1$, we have

$$
\left|N \otimes \otimes^{c+1} G\right| \leq p^{m_{c} d+m_{c} \quad \mid d^{2}+\cdots+m_{1} d^{c}} .
$$

Proof. For $c=1$ the corollary follows from Proposition 1(ii). For arbitrary $i \geq 1$ let us define

$$
J_{i}(N, G)=\operatorname{ker}\left(\mu: N \otimes^{i} G \rightarrow \gamma_{i}(N, G)\right) .
$$

For $c \geq 2$, there is thus an exact sequence

$$
\begin{equation*}
J_{c}(N, G) \otimes G \rightarrow\left(N \otimes^{c} G\right) \otimes G \rightarrow \gamma_{c}(N, G) \otimes G \rightarrow 1 . \tag{***}
\end{equation*}
$$

Now, G and $J_{c}(N, G)$ act trivially on each other. Thus, $\left|J_{c}(N, G) \otimes G\right| \leq\left|J_{c}(N, G)\right|^{d} \leq$ $\left|N \otimes^{c} G\right|$. Also, Proposition 1(ii) implies $\left|\gamma_{c}(N, G) \otimes G\right| \leq p^{m_{c} d}$. So sequence (***) provides the recurrence relation

$$
\left|N \otimes^{c+1} G\right| \leq p^{m_{c} d}\left|N \otimes \otimes^{c} G\right|
$$

from which the corollary follows. (Note that this proof does not use the finiteness of G.)

3. A topological application

Suppose that a $C W$-space X is a union $X=A \cup B$ of two path-connected $C W$ subspaces A and B whose intersection $C=A \cap B$ is path-connected. Some of the homotopy structure of the space X can be calculated in terms of the homotopy structure of the spaces A, B and C. For instance, van Kampen's theorem on the fundamental group describes $\pi_{1} X$ as an amalgamated sum of groups:

$$
\pi_{1} X \cong \pi_{1} A *_{\pi_{1} C} \pi_{1} B
$$

A "two-dimensional analogue" of van Kampen's Theorem is used in [1] to describe the second relative homotopy group $\pi_{2}(X, C)$ under the hypothesis that the canonical homomorphisms $\pi_{1} C \rightarrow \pi_{1} A, \pi_{1} C \rightarrow \pi_{1} B$ are surjective:

$$
\pi_{2}(X, C) \cong \pi_{2}(A, C) \circ \pi_{2}(B, C)
$$

Here the symbol \circ denotes the construction of the previous section, the groups $\pi_{2}(A, C), \pi_{2}(B, C)$ acting on one another via the boundary homomorphisms $\pi_{2}(A, C) \rightarrow$ $\pi_{1} C, \pi_{2}(B, C) \rightarrow \pi_{1} C$ and actions of $\pi_{1} C$.

A "three-dimensional analogue" of van Kampen's theorem is used in [3] to describe the triad homotopy group $\pi_{3}(X, A, B)$ under the hypothesis that the canonical homomorphisms $\pi_{1} C \rightarrow \pi_{1} A, \pi_{1} C \rightarrow \pi_{1} B$ are surjective:

$$
\pi_{3}(X, A, B) \cong \pi_{2}(A, C) \otimes \pi_{2}(B, C)
$$

Using the exact sequences (for $n \geq 1$) (see [13])

$$
\begin{aligned}
& \quad, \pi_{n} C \rightarrow \pi_{n} A \rightarrow \pi_{n}(A, C) \rightarrow \pi_{n-1} C \rightarrow \\
& \rightarrow \pi_{n} C \rightarrow \pi_{n} B \rightarrow \pi_{n}(B, C) \rightarrow \pi_{n-1} C \rightarrow \\
& \rightarrow \pi_{n}(B, C) \rightarrow \pi_{n}(X, A) \rightarrow \pi_{n}(X, A, B) \rightarrow \pi_{n-1}(B, C) \rightarrow
\end{aligned}
$$

one readily obtains the following bound on $\pi_{3} X$.
Proposition 5. Suppose that the canonical homomorphisms $\pi_{1} C \rightarrow \pi_{1} A, \pi_{1} C \rightarrow \pi_{1} B$ are surjective. Then

$$
\left|\pi_{3} X\right| \leq \frac{\left|\pi_{1} A\right| \cdot\left|\pi_{3} A\right|}{\left|\pi_{2} A\right|} \cdot \frac{\left|\pi_{1} B\right| \cdot\left|\pi_{3} B\right|}{\left|\pi_{2} B\right|} \cdot \frac{\left|\pi_{2} C\right|^{2}}{\left|\pi_{1} C\right|^{2}} \cdot\left|\pi_{2}(A, C) \circ \pi_{2}(B, C)\right| \cdot\left|\pi_{2}(A, C) \otimes \pi_{2}(B, C)\right| .
$$

The bound is attained if, for instance, the homotopy groups $\pi_{3} A, \pi_{3} B, \pi_{2} C$ are all trivial.

We clearly have

$$
\left|\pi_{2}(A, C) \circ \pi_{2}(B, C)\right| \leq\left|\pi_{2}(A, C)\right|\left|\pi_{2}(B, C)\right|
$$

Thus, Theorem 2 yields an explicit bound on $\left|\pi_{3} X\right|$ in the case where $\pi_{2}(A, C)$ and $\pi_{2}(B, C)$ are known prime-power groups.

4. Computer computations

We now consider all pairs of normal subgroups of the quaternion group, $Q_{16}=$ $\left\langle a, b \mid a^{16}=b^{8} a^{2}=a b^{-1} a b=1\right\rangle$, with actions being conjugations in Q_{16}. Twelve such subgroups exist. Table 1 presents the different actions which arise in this way, by exhibiting the images of the generators of H under the actions of the generators of G.

Table 2 lists $|G \otimes H|$ for all pairs of normal subgroups G and H in Q_{16}. Since $G \otimes H \cong H \otimes G$ the table only includes the case $|G| \leq|H|$. We consider two pairs (G, H) and $\left(G^{\prime}, H^{\prime}\right)$ to be isomorphic if there is an isomorphism $\phi: G H \rightarrow G^{\prime} H^{\prime}$ that restricts to isomorphisms $G \xrightarrow{\cong} G^{\prime}, H \xrightarrow{\cong} H^{\prime}$. Since isomorphic pairs yield isomorphic tensor products, the table contains just one entry for each isomorphism class of pairs. There is a certain asymmetry in the bound of Theorem 2 , yet $G \otimes H \cong H \otimes G$. Thus,

Table 1
The conjugation actions of subgroups G on subgroups H

	Generators	G															
		1	a^{2}	a	b^{4}	a^{2}	$a b^{4}$	a	b^{4}	$a^{2} b^{2}$	$a b^{2}$	a	b^{2}	b	$a b$	a	b
	$x=a^{2}$	x															
	$x=a$	x	\boldsymbol{x}	x	x	x^{3}	x^{3}	x	x^{3}								
	$x=b^{4}$	x															
	$x=a^{2}$	x															
	$y=a b^{4}$	y	$x y$	$x y$	y	$x y$											
	$x=a$	x	x^{3}	x^{3}	x	x^{3}											
	$y=b^{4}$	y															
H	$x=a^{2} b^{2}$	x															
	$x=a b^{2}$	x	x^{5}	x^{5}	x	x^{5}											
	$x=a$	x	x^{3}	x^{3}	x	x^{3}											
	$y=b^{2}$	y															
	$x=b$	x	x	x^{9}	x	x	x^{9}	x^{9}	x	x	x^{9}	x^{9}	x	x	x^{9}	x^{9}	x
	$x=a b$	x	x	x^{9}	x	x	x^{9}	x^{9}	x	x	x^{9}	x^{9}	x	x^{9}	x	x^{9}	x^{9}
	$\begin{array}{r} x=a \\ y=b \end{array}$	x	x	$\begin{aligned} & x \\ & x^{2} y \end{aligned}$	${ }^{x}$	x	$\begin{aligned} & x \\ & x^{2} v \end{aligned}$	$\begin{aligned} & x \\ & x^{2} y \end{aligned}$	x	x	$\begin{aligned} & x \\ & x^{2} v \end{aligned}$	$\begin{aligned} & x \\ & x^{2} v \end{aligned}$	${ }^{x}$	x^{3}	x^{3}	$\begin{aligned} & x \\ & x^{2} \end{aligned}$	x^{3}
	$y=b$	y	y	$x^{2} y$		y	$x^{2} y$	$x^{2} y$	y	y	$x^{2} y$	$x^{2} y$	y	${ }^{\prime}$	$x^{2} y$	$x^{2} y$	y

Table 2
$|G \otimes H|$ for $G, H \unlhd Q_{16}$

Generators G	$\|G\|$	Generators H	$\|H\|$	$\log _{2}(\|G \otimes H\|)$	$\log _{2}$ (bound of Theorem 2)
a^{2}	2	a^{2}	2	1	1
a^{2}	2	a	4	1	1
a^{2}	2	$a^{2}, a b^{4}$	4	2	2
a^{2}	2	a, b^{4}	8	2	2
a^{2}	2	$a^{2} b^{2}$	8	1	1
a^{2}	2	a, b^{2}	16	2	2
a^{2}	2	b	16	1	1
a^{2}	2	a, b	32	2	2
a	4	a	4	2	2
a	4	$a^{2}, a b^{4}$	4	2	4
a	4	a, b^{4}	8	3	4
a	4	$a^{2} b^{2}$	8	2	2
a	4	a, b^{2}	16	3	4
a	4	b	16	2	5
a	4	a, b	32	3	4
b^{4}	4	b	16	2	2
b^{4}	4	a, b	32	3	4
$a^{2}, a b^{4}$	4	$a^{2}, a b^{4}$	4	4	4
$a^{2}, a b^{4}$	4	a, b^{4}	8	4	4
$a^{2}, a b^{4}$	4	$a^{2} b^{2}$	8	2	2
$a^{2}, a b^{4}$	4	a, b^{2}	16	4	4
$a^{2}, a b^{4}$	4	b	16	2	5
$a^{2}, a b^{4}$	4	a, b	32	3	4
a, b^{4}	8	a, b^{4}	8	5	6
a, b^{4}	8	$a^{2} b^{2}$	8	3	3
a, b^{4}	8	a, b^{2}	16	5	6
a, b^{4}	8	b	16	3	6
a, b^{4}	8	a, b	32	2	6
$a^{2} b^{2}$	8	$a^{2} b^{2}$	8	3	3
$a^{2} b^{2}$	8	a, b^{2}	16	4	6
$a^{2} b^{2}$	8	b	16	3	3
$a^{2} b^{2}$	8	a, b	32	4	6
$a b^{2}$	8	b	16	3	6
$a b^{2}$	8	a, b	32	4	6
a, b^{2}	16	a, b^{2}	16	6	8
a, b^{2}	16	b	16	4	7
a, b^{2}	16	a, b	32	2	8
b	16	b	16	4	4
b	16	$a b$	16	4	7
b	16	a, b	32	5	8
$a b$	16	a, b	32	5	8
a, b	32	a, b	32	7	10

a lower bound may sometimes be obtained by interchanging the roles of G and H. However, the table does not involve such interchanges.

Table 2 was computed using a GAP program based on the algorithm describcd in [9]. Details of the program may be obtained by e-mailing the authors at graham.ellis@ucg.ie.

References

[1] R. Brown, Coproducts of crossed P-modules: applications to second homotopy groups and to the homology of groups, Topology 23 (1984) 337-345.
[2] R. Brown, D.L. Johnson, E.F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987) 177-202.
[3] R. Brown, J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311-335.
[4] J. Burns, G. Ellis, Inequalities for Baer invariants of finite groups, Canad. Math. Bull., to appear.
[5] G. Ellis, The nonabelian tensor product of finite groups is finite, J. Algebra 111 (1987) 203-205.
[6] G. Eliis, On the tensor square of prime power groups, Arch. Math. 66 (1996) 467-469.
[7] G. Ellis, On Peiffer central series, Glasgow Math. J., to appear.
[8] G. Ellis, On groups with a finite nilpotent upper central quotient, submitted.
[9] G. Ellis, F. Leonard, Computing the Schur multiplier and tensor products of finite groups, Proc. Roy. lrish Acad. A 95 (2) (1995) 137-147.
[10] D. Guin, Cuhomologie non-abeliennes des groups, J. Pure Appl. Algebra 50 (1988) 109-138.
[11] P. Hilton, U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics vol. 4, Springer, Berlin, 1970.
[12] N.R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil. Mat. 22 (1) (1991) 63-79.
[13] G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics vol. 61, Springer, Berlin, 1978.

[^0]: * Corresponding author. E-mail: graham.ellis@ucg.ie.

