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Abstract 

We give a bound for the order of the nonabelian tensor product of two prime-power groups. 
From this we obtain bounds on the third homotopy group of a union of two spaces. We illustrate 
our bound by using a GAP computer program to determine the order of the nonabelian tensor 
product G @H for all normal subgroups G and H of the quatemion group of order 32. @ 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Let G be a finite p-group and H a finite q-group where the primes p and q are 

not necessarily distinct. Let there be an action (g,h) H gh of G on H, and an ac- 
tion (h, g) H ‘g of H on G. The group G is assumed to act on itself by conjugation 

(g, g’) H gg’ = gg’g-‘, and H is assumed to act on itself similarly. Let us suppose that 

the various actions are compatible in the sense that 

PWg’ = qh(g-lg’)), 

(*S?)hl= h(g(h-‘h’)), 

for g,g’EG, h,h’EH. 
The tensor product G@ H was defined in [3] as the group generated by symbols 

g @ h (for g E G, h E H), subject to the relations 

gg’ @ h = (gg’ @ gh)(g @h), 

g c+ hh’ = (g @ hXhg @a ‘h’) 3 
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for g, g’ E G, h, h’ E H. Homomorphisms 

~:Gc~H+G, gBhhghg-l, 

,u:G@H+H, g@hhghh-‘, 

and an isomorphism 

G@HzH@G, g@hHh@g, 

were established in [3]. 

It was shown in [5] that G @H is a finite pq-group. In Section 2 we give a bound 

for the order of G @ H. This bound is illustrated in Section 4, where we use a GAP 

computer program to determine ]G 8 H 1 for all normal subgroups G, H of the quater- 

nion group of order 32. In Section 3 we consider a union of CW-spaces X = A U B; 
we give a bound on rcsX in terms of the homotopy groups of A, B and A n B, and a 

certain tensor product. 

2. Group-theoretic results 

If there exists a group E containing both G and H as normal subgroups, then 

conjugation in E gives rise to compatible actions. In this case we let GH denote the 

subgroup of E generated by G and H, and we define 

HG = {g E G: there exists an h E H such that gh-’ E Z(GH)}. 

Note that HG is a normal subgroup of G, and that HG = G if G C: H. 
We let @G denote the Frattini subgroup [G, G]GP of G. Thus, G is a d-generator 

group if and only if ]G/@GI = pd. 

Proposition 1. Suppose that G and H are normal subgroups of E, and that actions 
arise from conjugation in E. 

(i) If p#q then IG@HI = 1. 

(ii) Suppose that p =q and that G is a d-generator group of order p”, H is a 
d’-generator group of order p”‘, and IHGI/IHG fl @GI = pk. Then 

IG B HI < p~~‘-(k++4(~‘--d’). 

Proof. (i) Suppose p # q. Then [G, H] is trivial since it lies in the intersection of G 

with H. Proposition 2.4 in [3] thus implies an isomorphism 

G@H = GabgzHab, 

where the right-hand side denotes the usual tensor product of abelian groups. Clearly 

Gab @z Hub is trivial. 

(ii) Suppose p = q. We shall consider two cases. 
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Case 1: Suppose [G, H] = 1, and let Ha6 E’ Cl x C2 x . . . x Cdl, where Ci denotes 

a cyclic p-group. Proposition 2.4 in [3] yields 

G@H 2 Gnb@HHab g(Gab@Cl) x (Gub@C2) x ... x (Gab@Cd,). 

Therefore, 

Since k<d we have 

JG@H( I pnd’ 

as required. 

Case 2: Suppose [G, H] # 1. Let 1 = n + d with n # 0, n’ # 0. As an inductive hy- 

pothesis, suppose that the proposition has been proved for all p-groups G’, H’ with 

]G’l/H’I < pt. This hypothesis is certainly true for t =2, since IG’IIH’I 5 p2 implies 

that either G’ n H’ = 1 or G’ = H’ = C,, and consequently, that [G’, H’] = 1. Assume 

the hypothesis true for t < 1. 

A simple exercise, using the class equation, shows that any non-trivial normal sub- 

group of a finite p-group intersects the centre non-trivially. There is thus a central 

subgroup N of GH such that N C [G, H] and IN] = p. Proposition 9 in [2] easily 

extends to yield the following lemma. 

Lemma. Any central subgroup Z of GH which lies in the intersection Gn H gives 

rise to an exact sequence 

(G@Z) x (Z~H)--tG~H--t(G/Z)~(H/Z)j 1. 

The inclusion N & [G, H] implies that the image of the canonical homomorphism 

HG @N + G 18 H is contained in the image of the canonical homomorphism N @ H + 

G@H. (To see this let g EHG and let r= [gl,hl] . ..[gt.ht] be an element in N. 

Let ? be an element in G @ H which is mapped to r by 1. By the definition of HG 

there exists an element h E H such that ‘gi = gg; and *hi = ‘hi for all i. Thus ‘f =g?. 

Theorem 2.3(d) in [3] implies that, in the tensor product G @ H, we have 



122 G. Ellis, A. McDermott/ Journal of Pure and Applied Algebra 132 (1998) 119-128 

The lemma with Z = N, together with our result on the image of HG @ N + G @ H, 
imply an exact sequence 

(G/HG@N> x (N@H)-+G@H+(G/N)@(H/N)~l. 

This sequence and the isomorphism (G/HG) @N ” G/(HG@G) yield 

as required. 0 

When G = H, Proposition I(ii) improves on a bound given by Rocco [ 121 (see 

also [6]). 

Not all compatible actions arise from conjugation in a group E containing G and H. 
Suppose, for instance, that G and H are cyclic groups of order 8, with generators x 

and y. Compatible actions arise by defining “y = y-l, J’x =x-l. These actions do not 

arise from conjugation, for if they did we would have x2 =xYx-’ =Xyy-’ = y-z, and 

thus the contradiction x2 = Yx2 = x-‘. 
So we now work towards a version of Proposition 1 for arbitrary compatible actions. 

Let us use the action of H on G to form the semi-direct product G xH, in which 

elements are multiplied according to the rule 

(g,h).(g’ h’)=(ghg’Jh’) 9 

for g, g’ E G, h, h’ E H. Consider the subgroup P of this semi-direct product generated 

by the elements (g g , h -’ h gh-‘) for g E G, h E H. It is readily verified (or see, for in- 

stance, [ 11) that P is a normal subgroup of G x H. Following [ 11, set G o H = (G >a H)/P. 
The canonical homomorphisms G -+ G x H, g H (g, 1) and H + GM H, h H ( 1, h) induce 

homomorphisms 

d: G+GoH, 

One readily verifies (or see [ 11) that 8 and 6 are crossed modules. It follows that ker d 
is a central subgroup of G which is stable under the action of H, and thus that ker 8 
is a ZH-module. Similarly, kerd is a ZG-module. 

Let [H, ker 81~ be that central subgroup of G generated by the elements hx.-’ for 

h E H, x E ker 8. Note that [H, ker 81, is a hH-module. We similarly have a ZG-module 

[G, ker 61~. 
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Let us denote by HI (G, A) the first Eilenberg-Mac Lane homology of G with coef- 

ficients in a G-module A. 

Theorem 2. (i) If p # q then G @H E [G, ker 61~ x [H, ker a],, and consequently, 

jG@II = I[G,ker&]I[H,ker8]al. 

(ii) Suppose p= q, and that G is a d-generator group of order p”, H is a d’- 
generator group of order p”‘, and InGj/InG n @Cl = pk. Then 

IG @HI 5 Kp”“‘-(k+“-d)(“‘-d’), 

where K=IH,(G,ker6)1IH,(H,kera)(l[H,kera]cI([G,kerS]HI. 

Proof. Proposition 7 in [2] extends to yield the following generalisation of the lemma 

in our proof of Proposition 1. 

Lemma. Any pair of crossed modules d : G + Q and 6: H + Q yields an exact se- 
quence 

(G@ker6) x (kera@H)+G@H-+GG~+l, 

where G = aG, I? = 6H are the images of G, H in Q. 

(*) 

Taking Q = Go H, and a, 6 to be as in the theorem, note that G’, I? are both normal 

in G o H, and so they act on each other by conjugation. Corollary 3.3 in [lo] provides 

an exact sequence 

l+H~(G,ker6)+G@ker6~[G,ker6]n+l. (**) 

(i) Suppose p # q. Proposition l(i) tells us that G @I? = 1. Since G is a p-group 

and ker 6 is a q-group, we have HI (G, ker 6) = 1 (see, for instance, [l 11). Sequence 

(**) implies 

G @ ker 6 2 [G, ker 61~. 

Similarly, 

ker 8 @H E [H, ker ala. 

Since the composite homomorphism 

[G,ker&~GC3ker6+G@3H+H 

sends [G, ker 6]n injectively into H, the q-group [G, ker 6]n embeds into G @ H. Sim- 

ilarly, the p-group [H, ker a]G embeds into G @H. Since p # q, sequence (*) implies 

the required isomorphism 

[G, ker 6]n x [H, ker a], E G 63 H. 
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(ii) Suppose p = q. The required homomorphism follows from Proposition l(ii) and 

the sequences (*) and (**). 0 

(Note that the isomorphism of Theorem 2(i), in fact, holds for any two finite groups 

G, H with coprime exponents.) 

Let N be a normal subgroup in G. Using conjugation actions, we can form the tensor 

product N @ G. As explained in [3], there is an action of the group G on the tensor 

product N @ G given by 

g(n @ g’) = (% @ gg’) 

for g,g’ E G, n EN. Conversely, an element HEN @G acts on gE G by ‘g= 

(pr)g(pr)-‘. These actions are compatible and we can use them to form the tensor 

product (N @I G) @ G. This construction can be iterated to form the tensor product 

N@C+lG=(((N@G)@G)-. @G) 

of N with c copies of G. (In this notation, N g3G = (N @ G) @ G.) Let us define a 

central series by 

yi+i(N, G) = MN, G), Gl. 

There is a canonical surjection p : N @G ++ y,(N, G) which sends a tensor (((n @ gi) @ 

g2)... @ gc) to the commutator [[in, gil, 921,. . . , gJ 

The following corollary is the basis for the main results of [4,8]. It is also essential 

to the proof of Theorem 2 in [7]. 

Corollary 3. Let N be a normal subgroup of a d-generator p-group G. Suppose that 
lyi(N, G)I = pm1 for i= 1,2,. . . . Then, for any c > 1, we have 

IN @C+‘GI 5 pm,d+m,_,d2+~~~fm,dc~ 

Proof. For c = 1 the corollary follows from Proposition l(ii). For arbitrary i > 1 let us 

define 

Ji(N, G) = ker(p : N @‘G -+ yi(N, G)). 

For c 2 2, there is thus an exact sequence 

J,(N,G)@G+(NEYG)@G+Y~,(N,G)@G+~. (* * *) 

Now, G and J,(N, G) act trivially on each other. Thus, IJ,(N, G) @I G] 5 ]J,(N, G)ld 5 

IN WGI. Also, Proposition l(ii) implies ]y,(N, G) @ G] 5 pmcd. So sequence (* * *) 

provides the recurrence relation 

IN &+iG] 5 pmcdIN ~3% 
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from which the corollary follows. (Note that this proof does not use the finiteness 

of G.) 0 

3. A topological application 

Suppose that a CW-space X is a union X = A U B of two path-connected CW- 
subspaces A and B whose intersection C =A n B is path-connected. Some of the ho- 

motopy structure of the space X can be calculated in terms of the homotopy structure 

of the spaces A,B and C. For instance, van Kampen’s theorem on the fundamental 

group describes rctX as an amalgamated sum of groups: 

A “two-dimensional analogue” of van Kampen’s Theorem is used in [l] to describe 

the second relative homotopy group 7cz(X, C) under the hypothesis that the canonical 

homomorphisms rrtC -+ z1A, nlC -+ nlB are smjective: 

7c2(X, C) 2 7c2(A, C) 0 rcz(B, C). 

Here the symbol o denotes the construction of the previous section, the groups 

x2(A, C), 7c2(B, C) acting on one another via the boundary homomorphisms Q(A, C) + 

xl C, 712(B, C) + rctC and actions of nt C. 
A “three-dimensional analogue” of van Kampen’s theorem is used in [3] to de- 

scribe the tiad homotopy group q(X,A, B) under the hypothesis that the canonical 

homomorphisms rrt C + z1A, ~1 C -+ 711 B are surjective: 

q(X,A, B) E 7c2(A, C) @ z2(B, C). 

Using the exact sequences (for n 2 1) (see [ 131) 

+ nn(B, C) + n,(X,A) --+ PQAB) + G--1(4 C> +, 

one readily obtains the following bound on x3X. 

Proposition 5. Suppose that the canonical homomorphisms ~1 C + x1A, 711 C -+ xlB 
are surjective. Then 

,K3x, < Iw4+1~3-4~ lQWn3BI 1712C12 

I74 
.-+cz(A, C) 0 w(B, ‘71.1M-4 C) @ MB, C)l. 

1~24 b1C12 

The bound is attained if, for instance, the homotopy groups qA, 713B, 712C are all 
trivial. 
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We clearly have 

1712(‘4, c> 0 712(&q 5 1712(4 C>lIn2(4 a 

Thus, Theorem 2 yields an explicit bound on Irc& in the case where rcz(A,C) and 

7c2(B, C) are known prime-power groups. 

4. Computer computations 

We now consider all pairs of normal subgroups of the quaternion group, Qt6 = 

(a,!+~‘~ = b*u* = ab-‘ab = l), with actions being conjugations in Qt6. Twelve such 

subgroups exist. Table 1 presents the different actions which arise in this way, by 

exhibiting the images of the generators of H under the actions of the generators of G. 

Table 2 lists IG ~3 HI for all pairs of normal subgroups G and H in Qt6. Since 

G @ H 2 H @ G the table only includes the case I GI 5 JHI. We consider two pairs 

(G, H) and (G’, H’) to be isomorphic if there is an isomorphism $I : GH + G’H’ that 

restricts to isomorphisms GZG’, HZH’. Since isomorphic pairs yield isomorphic 

tensor products, the table contains just one entry for each isomorphism class of pairs. 

There is a certain asymmetry in the bound of Theorem 2, yet G @ H S H @ G. Thus, 

Table 1 

The conjugation actions of subgroups G on subgroups H 

G 

Gener- 

ators 1 a2 a b4 a2 ab4 a b4 a2b2 ab2 a b2 b ab a b 

x=a2 

x=a 

x=b4 

x = a2 
y=ab4 

x=a 
y=b4 

H x=a2b2 

x=ab2 

x=a 
y=b2 

x=b 

r=ab 

x=a 

XX x 

x x x 

xx x 

xx x 

YY Y 

xx n 

YY Y 

xxx 

xx x 

xx x 

YY Y 

x n x9 

x x x9 

xxx 

x x x 

x x x 

x x x 

x x x 

Y Y Y 

x x x 

Y Y Y 

x x x 

n x x 

x x x 

Y Y Y 

n x 2 

x x 2 

x x x 

x 

x 

x 

x 

Y 

x 

Y 

x 

n 

n 

Y 

x9 

x9 

n 

x x x 

x x x 

x x x 

x x x 

YY Y 

x x x 

YY Y 

x x n 

x x x 

x x x 

YY Y 

n x x9 

x x x9 

x x x 

x 

x 

n 

x 

Y 

x 

Y 

x 

n 

x 

Y 

x9 

x9 

x 

x x x x 

x x3 x3 x 

x x x x 

x x x x 

Y XY XY Y 

x x3 x3 x 

YYY Y 

x x x x 

x x5 x5 x 

x x3 x3 n 

YYY Y 

x x x9 x9 

x x9 x x9 

n x3 x3 x 

x 

x3 

x 

x 

XY 

X3 
Y 

x 

2 

X3 
Y 

x 

x9 

x3 
y =b Y Y X'Y Y Y x2y X=Y Y Y X'Y X'Y Y Y X=Y X'Y Y 
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Table 2 

IG@HI for G,H 4 Q16 

Generators G IGI Generators H IHI log,(lG@HI) logI (bound of 

Theorem 2) 

a2 2 

;z 2 2 

a2 2 

$ 2 2 

a2 2 

a= 2 

a 4 

a 4 

a 4 
a 4 
a 4 

a 4 

%4 4 4 

b4 4 

a2,ab4 4 

a2,ab4 4 

a2,ab4 4 

a2,ab4 4 

a2, ab4 4 

a2,ab4 4 

a,b4 8 
a,b4 8 
0, b4 8 

a,b4 8 
a, b4 8 
a2b2 8 

a2b2 8 

a2b2 8 

a2b2 8 

ab2 8 

ab2 8 

a, b2 16 

a, b2 16 

a, b2 16 

b 16 

b 16 

b 16 

ab 16 

a, b 32 

a2 2 
a 4 

a2,ab4 4 

a,b4 8 
a2b2 8 
a, b2 16 

b 16 
a,b 32 
a 4 

a2,ab4 4 

a, b4 8 

a2b2 8 
a, b2 16 

b 16 

a, b 32 
b 16 
a,b 32 
a2, ab4 4 
a, b4 8 

a2b2 8 
a, b= 16 
b 16 
a,b 32 
a, b4 8 

a2b2 8 
a, b2 16 
b 16 

a,b 32 

a2b2 8 
a,b2 16 

b 16 
a, b 32 
b 16 
a,b 32 
a, b2 16 
b 16 
a,b 32 

b 16 
ab 16 

a,b 32 

a,b 32 
a,b 32 

2 

1 
2 

2 

2 

3 

2 

3 

2 

3 

2 

3 

4 
4 

2 
4 

2 

3 

5 

3 

5 

3 

2 

3 

4 

3 

4 

3 

4 

6 

4 

2 

4 
4 

5 

5 

I 

1 

2 

2 

2 

2 

2 

4 

4 

2 

4 

5 

4 

2 

4 

4 
4 

2 

4 

5 

4 

6 

3 

6 

6 

6 

3 

6 

3 

6 
6 

6 

8 

7 

8 

4 

I 

8 

8 

10 

a lower bound may sometimes be obtained by interchanging the roles of G and H. 
However, the table does not involve such interchanges. 

Table 2 was computed using a GAP program based on the algorithm described in [9]. 

Details of the program may be obtained by e-mailing the authors at graham.ellis@ucg.ie. 
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