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Abstract

We give a bound for the order of the nonabelian tensor product of two prime-power groups.
From this we obtain bounds on the third homotopy group of a union of two spaces. We illustrate
our bound by using a GAP computer program to determine the order of the nonabelian tensor
product G ® H for all normal subgroups G and H of the quaternion group of order 32. (© 1998
Elsevier Science B.V. All rights reserved.

AMS Classification: 20J99

1. Introduction

Let G be a finite p-group and H a finite g-group where the primes p and g are
not necessarily distinct. Let there be an action (g,h)— %1 of G on H, and an ac-
tion (h,g)—"g of H on G. The group G is assumed to act on itself by conjugation
(9,9 )— 99 =gg’g~", and H is assumed to act on itself similarly. Let us suppose that
the various actions are compatible in the sense that

g —1
By =" ¢')),
Con =H¢ " n'Y),

for g,g €G, h,W €H.
The tensor product G &® H was defined in [3] as the group generated by symbols
g®h (for g€ G, h€ H), subject to the relations

99' @ h=("g' ®h)(g R h),
gRM =(goh)("ge"H),
* Corresponding author. E-mail: graham.ellis@ucg.ie.

0022-4049/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII: S0022-4049(97)00112-6



120 G. Ellis, A. McDermott!Journal of Pure and Applied Algebra 132 (1998) 119-128

for g,¢' € G, h, i’ € H. Homomorphisms
VGRH—G, gohmgly™,
L GRH—H, goh—9hh",
and an isomorphism
GRH-H®G, g®h—h®g,

were established in [3].

It was shown in [5] that G® H is a finite pg-group. In Section 2 we give a bound
for the order of G ® H. This bound is illustrated in Section 4, where we use a GAP
computer program to determine |G ® H| for all normal subgroups G, H of the quater-
nion group of order 32. In Section 3 we consider a union of CW-spaces X =4 U B;
we give a bound on 73X in terms of the homotopy groups of 4, B and 4N B, and a
certain tensor product.

2. Group-theoretic results

If there exists a group E containing both G and H as normal subgroups, then
conjugation in E gives rise to compatible actions. In this case we let GH denote the
subgroup of E generated by G and H, and we define

#G ={g € G: there exists an k€ H such that gh~' € Z(GH)}.

Note that 4G is a normal subgroup of G, and that yG=G if GCH.
We let &G denote the Frattini subgroup [G, G]1G? of G. Thus, G is a d-generator
group if and only if |G/®G| = p°.

Proposition 1. Suppose that G and H are normal subgroups of E, and that actions
arise from conjugation in E.

() If p#£q then |GRH|=1.

(ii) Suppose that p=gq and that G is a d-generator group of order p", H is a
d'-generator group of order p", and |yG|/|yG N ®G|= p*. Then

|G®H| < pnn'—(k+n‘d)(n’—d’)'
Proof. (i) Suppose p#gq. Then [G,H] is trivial since it lies in the intersection of G
with H. Proposition 2.4 in [3] thus implies an isomorphism

GRH = G*®H?,

where the right-hand side denotes the usual tensor product of abelian groups. Clearly
G @ 7z H® is trivial.
(ii) Suppose p=gq. We shall cousider two cases.



G. Ellis, A. McDermott!Journal of Pure and Applied Algebra 132 (1998) 119-128 121

Case 1: Suppose [G,H]=1, and let H® ~ ) x C x -+ x Cygr, where C; denotes
a cyclic p-group. Proposition 2.4 in [3] yields

GRHEGPQH® 2 (G*RC)x (G?RCy) x - x (G®®Cyq).
Therefore,

IGRH|<|G*RC| x - x |G ® Cy|
< |Gab|d’
<o
=pnd'.
Since k <d we have

IGoH|< p
— pnn'—(d+n—d)(n'—d')
< pnn’—(k+n—-d)(n'—d')

as required.

Case 2: Suppose [G,H]#1. Let I=n+n’ with n#£0, n’ #£0. As an inductive hy-
pothesis, suppose that the proposition has been proved for all p-groups G’, H' with
|G’||H'| < p’. This hypothesis is certainly true for r=2, since |G’||H’| < p? implies
that either G’ NH'=1 or G'=H'=C,, and consequently, that [G',H']=1. Assume
the hypothesis true for £ <.

A simple exercise, using the class equation, shows that any non-trivial normal sub-
group of a finite p-group intersects the centre non-trivially. There is thus a central
subgroup N of GH such that N C[G,H] and |N|= p. Proposition 9 in {2] easily
extends to yield the following lemma.

Lemma. Any central subgroup Z of GH which lies in the intersection GNH gives
rise to an exact sequence

(G®Z)x (ZRH)— GRH —(G/Z)® (H/Z)— 1.

The inclusion N C[G,H] implies that the image of the canonical homomorphism
#G®N — G®H is contained in the image of the canonical homomorphism N @ H —
G®H. (To see this let ge yG and let t=[g;,71]...{gs;, k] be an element in N.
Let 7 be an element in G® H which is mapped to 7 by A. By the definition of 4G
there exists an element # € H such that g, =9g; and "h; =9h; for all i. Thus "% =9%.
Theorem 2.3(d) in [3] implies that, in the tensor product G ® H, we have

gor=9%1"1=" 1" =(ron)



122 G. Ellis, A. McDermott/Journal of Pure and Applied Algebra 132 (1998) 119-128

The lemma with Z =N, together with our result on the image of yGON - G®H,
imply an exact sequence

(G/HGON)X (N®H)— G®H — (G/N)®(H/N)— 1.
This sequence and the isomorphism (G/FG)® N = G/(yGPG) yield

|G®H| <|(G/N)®(H/N)|[(G/nG)®N|IN @ H]
= [(G/N) @ (H/N)||G/(1 GPG)| |H/PH|

= |(G/N)® (H/N)| p*~* p*

< p(n—l)(n’—1)—(k+n—d—1)(n’—d'—l)+d—k+d’

_ pnn'—(k+n—d)(n'—d')
as required. [

When G =H, Proposition 1(ii} improves on a bound given by Rocco [12] (see
also [6]).

Not all compatible actions arise from conjugation in a group £ containing G and H.
Suppose, for instance, that G and H are cyclic groups of order 8, with generators x
and y. Compatible actions arise by defining *y = y~!, Yx =x~!. These actions do not
arise from conjugation, for if they did we would have x> =x’x~! =*yy~! = =2, and
thus the contradiction x? =Yx? =x~2.

So we now work towards a version of Proposition 1 for arbitrary compatible actions.
Let us use the action of H on G to form the semi-direct product GxH, in which
elements are multiplied according to the rule

(g,h) (g, 1 Y=(g"q . hl)

for g,¢4' € G, h,# € H. Consider the subgroup P of this semi-direct product generated
by the elements (g%~ !,h%h~") for g€ G, he H. 1t is readily verified (or see, for in-
stance, [1]) that P is a normal subgroup of GxH. Following [1], set G o H =(GxH)/P.
The canonical homomorphisms G — GxH, g—(g,1) and H — GxH, h— (1, h) induce
homomorphisms

0:G—GoH,
0:H—-GoH.

One readily verifies (or see [1]) that 0 and o are crossed modules. It follows that ker ¢
is a central subgroup of G which is stable under the action of H, and thus that ker 0
is a ZH-module. Similarly, kerd is a ZG-module.

Let [H, ker 8] be that central subgroup of G generated by the elements “xx~! for
he€ H, x € ker 0. Note that [H, ker 0] is a ZH-module. We similarly have a ZG-module
[G, ker 5] H-
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Let us denote by H;(G,A) the first Eilenberg-Mac Lane homology of G with coef-
ficients in a G-module A.

Theorem 2. (i) If p#q then G® H = (G, ker 8]y x [H, ker 0], and consequently,
|G ® H| =[G, ker 5]y ||[H, ker O]¢|-

(ii) Suppose p=gq, and that G is a d-generator group of order p", H is a d'-
generator group of order p", and |y G|/|zG N ®G|= p*. Then

|G®H| SKpnn’—(IH—n—d)(n’—d')’

where K =|H\(G, ker 8)||H\(H, ker 8)||[H, ker 016]|[G, ker d]u|.

Proof. Proposition 7 in [2] extends to yield the following generalisation of the lemma
in our proof of Proposition 1.

Lemma. Any pair of crossed modules 0:G— Q and é:H — @ yields an exact se-
quence

(GRkerd) x (ker0@HY—-GOH -G®RH — 1, (*)
where G =0G, H=06H are the images of G, H in Q.
Taking Q=G oH, and 8, § to be as in the theorem, note that G, H are both normal

in GoH, and so they act on each other by conjugation. Corollary 3.3 in [10] provides
an exact sequence

1—»HI(G,ker5)—>G®ker5L>[G,ker5]H—»1. (xx)

(i) Suppose p#q. Proposition 1(i) tells us that G®H=1. Since G is a p-group
and ker é is a g-group, we have H,(G,kerd)=1 (see, for instance, [11]). Sequence
(#*) implies

G ®kerd =[G, kerdly.
Similarly,
ker 0@ H = [H, ker 0]g.
Since the composite homomorphism
(G, ker 8]y—G @kerd >GRO H —H

sends [G, ker 0]y injectively into H, the g-group [G,ker 6]y embeds into G ® H. Sim-
ilarly, the p-group [H, ker 0] embeds into G ® H. Since p #gq, sequence (*) implies
the required isomorphism

[G,ker dly x [H,ker dl¢ = G H.
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(ii) Suppose p =gq. The required homomorphism follows from Proposition 1(ii) and
the sequences (*) and (*x). O

(Note that the isomorphism of Theorem 2(i), in fact, holds for any two finite groups
G, H with coprime exponents.)

Let N be a normal subgroup in G. Using conjugation actions, we can form the tensor
product N ® G. As explained in [3], there is an action of the group G on the tensor
product N ® G given by

neg)=(n®%)

for g,9'€G, neN. Conversely, an element tc N®G acts on g€ G by ‘g=
(ut)g(ut)~"'. These actions are compatible and we can use them to form the tensor
product (N ® G)® G. This construction can be iterated to form the tensor product

NST'G=((N®G)®G)--- ®G)

of N with ¢ copies of G. (In this notation, N @G =(N ® G)® G.) Let us define a
central series by

NN, G)=N,
Yir1(V, G) = [N, G), G-

There is a canonical surjection u:N ®°G — y.(N, G) which sends a tensor (n® ¢,)®

g2)- -+ ®4gc) to the commutator [[[n,g1],92],...,9c]-
The following corollary is the basis for the main results of [4,8]. It is also essential
to the proof of Theorem 2 in [7].

Corollary 3. Let N be a normal subgroup of a d-generator p-group G. Suppose that
|y:(N, G)| = p™ for i=1,2,.... Then, for any c > 1, we have

|N ®c+lG| <pm£d+mc_|d2+'-~+mdc

Proof. For ¢ =1 the corollary follows from Proposition 1(ii). For arbitrary i > 1 let us
define

Ji(N, G)=ker(u:N &'G — (N, G)).
For ¢ > 2, there is thus an exact sequence
J(N,G)®G—(N®G)®G—7(N,G)®G — 1. (% % %)

Now, G and J.(N,G) act trivially on each other. Thus, |/.(N,G)® G| < |[J.(N,G)|? <
IN ®°G|. Also, Proposition 1(ii) implies |y.(¥, G)® G| < p™?. So sequence (* * *)
provides the recurrence relation

IN ®c+lG| < pm‘d|N®cG|
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from which the corollary follows. (Note that this proof does not use the finiteness
of G.)) O

3. A topological application

Suppose that a CW-space X is a union X =4UB of two path-connected CW-
subspaces A and B whose intersection C=ANB is path-connected. Some of the ho-
motopy structure of the space X can be calculated in terms of the homotopy structure
of the spaces 4,B and C. For instance, van Kampen’s theorem on the fundamental
group describes m;.X as an amalgamated sum of groups:

mX Zmd *g,c mB.

A “two-dimensional analogue” of van Kampen’s Theorem is used in [1] to describe
the second relative homotopy group (X, C) under the hypothesis that the canonical
homomorphisms 7,C — m4, m;C — m B are surjective:

(X, Cy= (4, C)o my(B, C).

Here the symbol o denotes the construction of the previous section, the groups
72(A, C), np(B, C) acting on one another via the boundary homomorphisms 73(4,C) —
mC, n2(B,C)— 7 C and actions of 7;C.

A “three-dimensional analogue” of van Kampen’s theorem is used in [3] to de-
scribe the triad homotopy group m3(X,4,B) under the hypothesis that the canonical
homomorphisms 7;C — 74, myC — m;B are surjective:

TE3(AX’A7B) = 71'2(14, C) & 7[2(B7 C)
Using the exact sequences (for n > 1) (see [13])

— 7,C = 1yd — (4, C) — T C —,
— 71,C — 7B — 7y(B,C) — 7,1 C —,

— Tn(B, C) = np(X, 4) — mn(X, 4, B) = 7ty—1(8,C) —,
one readily obtains the following bound on m3.X.
Proposition 5. Suppose that the canonical homomorphisms n,C — md,n,C —mB
are surjective. Then

|m14]|m34| |m1B||msB| |maC|?

X | <
|maX] < [m,4] [mB]  [mCP

-|m2(4, C) o ma(B, C)|-|m2(4, C) ® ma( B, C)|.

The bound is attained if, for instance, the homotopy groups m3A, m3B, 7, C are all
trivial.
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We clearly have
|7'62(A, C) o 7'[2(B, C)| < |7'62(A, C)HTCz(B, C)|

Thus, Theorem 2 yields an explicit bound on |73X| in the case where m,(4, C) and
72(8B, C) are known prime-power groups.

4. Computer computations

We now consider all pairs of normal subgroups of the quaternion group, Q6=
{a,bla'® =b%a® =ab~'ab=1), with actions being conjugations in Qis. Twelve such
subgroups exist. Table 1 presents the different actions which arise in this way, by
exhibiting the images of the generators of A under the actions of the generators of G.

Table 2 lists |G® H| for all pairs of normal subgroups G and H in Q4. Since
GOHX>H®G the table only includes the case |G| <|H|. We consider two pairs
(G,H) and (G',H") to be isomorphic if there is an isomorphism ¢: GH — G'H' that
restricts to isomorphisms G——G’, H-—H'. Since isomorphic pairs yield isomorphic
tensor products, the table contains just one entry for each isomorphism class of pairs.
There is a certain asymmetry in the bound of Theorem 2, yet GR H =2 H ® G. Thus,

Table 1
The conjugation actions of subgroups G on subgroups H
G
Gener-
ators 1 & a b* 4% ab* a b a?p? ab? a4 B b ab a b
x=a2 x x x X x x x x  x x x X x x x x
x=a X x x X x x x x x x x x X X x x?
x=b X x x x x X x x  x x X x x x x x
x = a2 X pe pe pe X pe X pe pe X pe pe pe pe X X
_ a4
y=ab y oy vy ¥y y oy y y vy ¥y y y Xy Xy ¥y xy
x=a x x x x x x x x x x x x ¥ i x x3
_ 4
y=>b y oy ¥ yo oy oy Y y Y Y Y y y
H x=dh® x x x x x X x x x x x x X x x x
x = ab? x x X X x x x x  x x x x x X x x>
x=a x x X X x x x X x x x x ¥ X x ¥3
_p2
y=b y y oy y y
x=b x x X x x ¥ 2 x «x ¥ ¥ x x X ¥ x
x=ab x x X x x 2 x° x x ¥ ¥ x 1 x x? x°
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Table 2
|G H| for G,H U Q4
Generators G |G Generators H |H| log,(|G® H|) log, (bound of
Theorem 2)
a? 2 a? 2 1 1
a? 2 a 4 1 1
a? 2 a?,ab® 4 2 2
a? 2 a, b’ 8 2 2
a? 2 a’b? 8 1 i
a? 2 a,b? 16 2 2
a? 2 b 16 1 1
a? 2 a,b 32 2 2
a 4 a 4 2 2
a 4 a?,ab* 4 2 4
a 4 a,b? 8 3 4
a 4 a*p? 8 2 2
a 4 a,b? 16 3 4
a 4 b 16 2 5
a 4 a,b 32 3 4
bt 4 b 16 2 2
b 4 a,b 32 3 4
a?,ab* 4 a?, ab* 4 4 4
a?,ab* 4 a,b* 8 4 4
a?, ab? 4 alp? 8 2 2
a?, ab? 4 a,b? 16 4 4
a?,ab® 4 b 16 2 5
a?, ab* 4 a,b 32 3 4
a, b* 8 a,b* 8 5 6
a, b* 8 a’p? 8 3 3
a, bt 8 a,b? 16 5 6
a,b? 8 b 16 3 6
a,b* 8 a,b 32 2 6
a’h? 8 ath? 8 3 3
a*h? 8 a,b* 16 4 6
a?b? 8 b 16 3 3
atb? 8 a,b 32 4 6
ab? 8 b 16 3 6
ab? 8 a,b 32 4 6
a,b? 16 a, b? 16 6 8
a,b? 16 b 16 4 7
a, b? 16 a,b 32 2 8
b 16 b 16 4 4
b 16 ab 16 4 7
b 16 a,b 32 5 8
ab 16 a,b 32 5 8
ab 32 a,b 32 7 10

a lower bound may sometimes be obtained by interchanging the roles of G and H.
However, the table does not involve such interchanges.

Table 2 was computed using a GAP program based on the algorithm described in [9].
Details of the program may be obtained by e-mailing the authors at graham.ellis@ucg.ie.
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