

Journal of Pure and Applied Algebra 132 (1998) 119-128

JOURNAL OF PURE AND APPLIED ALGEBRA

Tensor products of prime-power groups

Graham Ellis*, Aidan McDermott

Department of Mathematics, University College Galway, Galway, Ireland

Communicated by C. Kassel; received 7 October 1996; received in revised form 28 February 1997

Abstract

We give a bound for the order of the nonabelian tensor product of two prime-power groups. From this we obtain bounds on the third homotopy group of a union of two spaces. We illustrate our bound by using a GAP computer program to determine the order of the nonabelian tensor product $G \otimes H$ for all normal subgroups G and H of the quaternion group of order 32. © 1998 Elsevier Science B.V. All rights reserved.

AMS Classification: 20J99

1. Introduction

Let G be a finite p-group and H a finite q-group where the primes p and q are not necessarily distinct. Let there be an action $(g,h) \mapsto {}^{g}h$ of G on H, and an action $(h,g) \mapsto {}^{h}g$ of H on G. The group G is assumed to act on itself by conjugation $(g,g') \mapsto {}^{g}g' = gg'g^{-1}$, and H is assumed to act on itself similarly. Let us suppose that the various actions are *compatible* in the sense that

$${}^{(^{g}h)}g' = {}^{g}({}^{h}({}^{g^{-1}}g')),$$

 ${}^{(^{h}g)}h' = {}^{h}({}^{g}({}^{h^{-1}}h')),$

for $g, g' \in G$, $h, h' \in H$.

The tensor product $G \otimes H$ was defined in [3] as the group generated by symbols $g \otimes h$ (for $g \in G$, $h \in H$), subject to the relations

$$gg' \otimes h = ({}^{g}g' \otimes {}^{g}h)(g \otimes h),$$
$$g \otimes hh' = (g \otimes h)({}^{h}g \otimes {}^{h}h'),$$

^{*} Corresponding author. E-mail: graham.ellis@ucg.ie.

^{0022-4049/98/\$19.00 © 1998} Elsevier Science B.V. All rights reserved. PII: S0022-4049(97)00112-6

for $g, g' \in G$, $h, h' \in H$. Homomorphisms

$$\begin{split} \lambda: G \otimes H \to G, \quad g \otimes h \mapsto g^h g^{-1}, \\ \mu: G \otimes H \to H, \quad g \otimes h \mapsto {}^g h h^{-1}, \end{split}$$

and an isomorphism

 $G \otimes H \xrightarrow{\cong} H \otimes G, \quad g \otimes h \mapsto h \otimes g,$

were established in [3].

It was shown in [5] that $G \otimes H$ is a finite pq-group. In Section 2 we give a bound for the order of $G \otimes H$. This bound is illustrated in Section 4, where we use a GAP computer program to determine $|G \otimes H|$ for all normal subgroups G, H of the quaternion group of order 32. In Section 3 we consider a union of CW-spaces $X = A \cup B$; we give a bound on $\pi_3 X$ in terms of the homotopy groups of A, B and $A \cap B$, and a certain tensor product.

2. Group-theoretic results

If there exists a group E containing both G and H as normal subgroups, then conjugation in E gives rise to compatible actions. In this case we let GH denote the subgroup of E generated by G and H, and we define

$$_{H}G = \{g \in G: \text{ there exists an } h \in H \text{ such that } gh^{-1} \in Z(GH)\}.$$

Note that $_HG$ is a normal subgroup of G, and that $_HG = G$ if $G \subseteq H$.

We let ΦG denote the Frattini subgroup $[G, G]G^p$ of G. Thus, G is a *d*-generator group if and only if $|G/\Phi G| = p^d$.

Proposition 1. Suppose that G and H are normal subgroups of E, and that actions arise from conjugation in E.

(i) If $p \neq q$ then $|G \otimes H| = 1$.

(ii) Suppose that p = q and that G is a d-generator group of order p^n , H is a d'-generator group of order $p^{n'}$, and $|_HG|/|_HG \cap \Phi G| = p^k$. Then

$$|G \otimes H| \le p^{nn' - (k+n-d)(n'-d')}$$

Proof. (i) Suppose $p \neq q$. Then [G,H] is trivial since it lies in the intersection of G with H. Proposition 2.4 in [3] thus implies an isomorphism

 $G \otimes H \cong G^{ab} \otimes_{\mathbb{Z}} H^{ab},$

where the right-hand side denotes the usual tensor product of abelian groups. Clearly $G^{ab} \otimes_{\mathbb{Z}} H^{ab}$ is trivial.

(ii) Suppose p = q. We shall consider two cases.

Case 1: Suppose [G,H] = 1, and let $H^{ab} \cong C_1 \times C_2 \times \cdots \times C_{d'}$, where C_i denotes a cyclic *p*-group. Proposition 2.4 in [3] yields

$$G \otimes H \cong G^{ab} \otimes H^{ab} \cong (G^{ab} \otimes C_1) \times (G^{ab} \otimes C_2) \times \cdots \times (G^{ab} \otimes C_{d'}).$$

Therefore,

$$|G \otimes H| \leq |G^{ab} \otimes C_1| \times \cdots \times |G^{ab} \otimes C_{d'}|$$
$$\leq |G^{ab}|^{d'}$$
$$\leq |G|^{d'}$$
$$= p^{nd'}.$$

Since $k \leq d$ we have

$$|G \otimes H| \le p^{nd'}$$

= $p^{nn'-(d+n-d)(n'-d')}$
 $\le p^{nn'-(k+n-d)(n'-d')}$

as required.

Case 2: Suppose $[G,H] \neq 1$. Let l = n + n' with $n \neq 0$, $n' \neq 0$. As an inductive hypothesis, suppose that the proposition has been proved for all *p*-groups G', H' with $|G'||H'| \leq p^t$. This hypothesis is certainly true for t = 2, since $|G'||H'| \leq p^2$ implies that either $G' \cap H' = 1$ or $G' = H' = C_p$, and consequently, that [G', H'] = 1. Assume the hypothesis true for t < l.

A simple exercise, using the class equation, shows that any non-trivial normal subgroup of a finite *p*-group intersects the centre non-trivially. There is thus a central subgroup N of GH such that $N \subseteq [G,H]$ and |N| = p. Proposition 9 in [2] easily extends to yield the following lemma.

Lemma. Any central subgroup Z of GH which lies in the intersection $G \cap H$ gives rise to an exact sequence

$$(G \otimes Z) \times (Z \otimes H) \to G \otimes H \to (G/Z) \otimes (H/Z) \to 1.$$

The inclusion $N \subseteq [G,H]$ implies that the image of the canonical homomorphism $_H G \otimes N \to G \otimes H$ is contained in the image of the canonical homomorphism $N \otimes H \to G \otimes H$. (To see this let $g \in_H G$ and let $\tau = [g_1, h_1] \dots [g_t, h_t]$ be an element in N. Let $\tilde{\tau}$ be an element in $G \otimes H$ which is mapped to τ by λ . By the definition of $_H G$ there exists an element $h \in H$ such that ${}^h g_i = {}^g g_i$ and ${}^h h_i = {}^g h_i$ for all *i*. Thus ${}^h \tilde{\tau} = {}^g \tilde{\tau}$. Theorem 2.3(d) in [3] implies that, in the tensor product $G \otimes H$, we have

$$g \otimes \tau = {}^{g} \tilde{\tau} \, \tilde{\tau}^{-1} = {}^{h} \tilde{\tau} \, \tilde{\tau}^{-1} = (\tau \otimes h)^{-1}.)$$

122 G. Ellis, A. McDermott/Journal of Pure and Applied Algebra 132 (1998) 119–128

The lemma with Z = N, together with our result on the image of ${}_{H}G \otimes N \rightarrow G \otimes H$, imply an exact sequence

$$(G/_H G \otimes N) \times (N \otimes H) \rightarrow G \otimes H \rightarrow (G/N) \otimes (H/N) \rightarrow 1.$$

This sequence and the isomorphism $(G/_H G) \otimes N \cong G/(_H G \Phi G)$ yield

$$\begin{aligned} |G \otimes H| &\leq |(G/N) \otimes (H/N)| |(G/_H G) \otimes N| |N \otimes H| \\ &= |(G/N) \otimes (H/N)| |G/(_H G \Phi G)| |H/\Phi H| \\ &= |(G/N) \otimes (H/N)| p^{d-k} p^{d'} \\ &\leq p^{(n-1)(n'-1)-(k+n-d-1)(n'-d'-1)+d-k+d'} \\ &= p^{nn'-(k+n-d)(n'-d')} \end{aligned}$$

as required. \Box

When G = H, Proposition 1(ii) improves on a bound given by Rocco [12] (see also [6]).

Not all compatible actions arise from conjugation in a group *E* containing *G* and *H*. Suppose, for instance, that *G* and *H* are cyclic groups of order 8, with generators *x* and *y*. Compatible actions arise by defining ${}^{x}y = y^{-1}$, ${}^{y}x = x^{-1}$. These actions do not arise from conjugation, for if they did we would have $x^{2} = x^{y}x^{-1} = {}^{x}yy^{-1} = y^{-2}$, and thus the contradiction $x^{2} = {}^{y}x^{2} = x^{-2}$.

So we now work towards a version of Proposition 1 for arbitrary compatible actions. Let us use the action of H on G to form the semi-direct product $G \rtimes H$, in which elements are multiplied according to the rule

$$(g,h) \cdot (g',h') = (g^h g',hh')$$

for $g, g' \in G$, $h, h' \in H$. Consider the subgroup P of this semi-direct product generated by the elements $(g^h g^{-1}, h^g h^{-1})$ for $g \in G$, $h \in H$. It is readily verified (or see, for instance, [1]) that P is a normal subgroup of $G \rtimes H$. Following [1], set $G \circ H = (G \rtimes H)/P$. The canonical homomorphisms $G \to G \rtimes H$, $g \mapsto (g, 1)$ and $H \to G \rtimes H$, $h \mapsto (1, h)$ induce homomorphisms

 $\partial: G \to G \circ H,$

$$\delta: H \to G \circ H.$$

One readily verifies (or see [1]) that ∂ and δ are crossed modules. It follows that ker ∂ is a central subgroup of G which is stable under the action of H, and thus that ker ∂ is a $\mathbb{Z}H$ -module. Similarly, ker δ is a $\mathbb{Z}G$ -module.

Let $[H, \ker \partial]_G$ be that central subgroup of G generated by the elements ${}^hxx^{-1}$ for $h \in H, x \in \ker \partial$. Note that $[H, \ker \partial]_G$ is a $\mathbb{Z}H$ -module. We similarly have a $\mathbb{Z}G$ -module $[G, \ker \delta]_H$.

Let us denote by $H_1(G,A)$ the first Eilenberg-Mac Lane homology of G with coefficients in a G-module A.

Theorem 2. (i) If $p \neq q$ then $G \otimes H \cong [G, \ker \delta]_H \times [H, \ker \hat{\sigma}]_G$, and consequently,

 $|G \otimes H| = |[G, \ker \delta]_H| |[H, \ker \partial]_G|.$

(ii) Suppose p = q, and that G is a d-generator group of order p^n , H is a d'-generator group of order $p^{n'}$, and $|_HG|/|_HG \cap \Phi G| = p^k$. Then

$$|G\otimes H|\leq Kp^{nn'-(k+n-d)(n'-d')},$$

where $K = |H_1(G, \ker \delta)| |H_1(H, \ker \partial)| [H, \ker \partial]_G| [G, \ker \delta]_H|.$

Proof. Proposition 7 in [2] extends to yield the following generalisation of the lemma in our proof of Proposition 1.

Lemma. Any pair of crossed modules $\partial: G \to Q$ and $\delta: H \to Q$ yields an exact sequence

$$(G \otimes \ker \delta) \times (\ker \partial \otimes H) \to G \otimes H \to \overline{G} \otimes \overline{H} \to 1, \tag{(*)}$$

where $\bar{G} = \partial G$, $\bar{H} = \delta H$ are the images of G, H in Q.

Taking $Q = G \circ H$, and ∂ , δ to be as in the theorem, note that \overline{G} , \overline{H} are both normal in $G \circ H$, and so they act on each other by conjugation. Corollary 3.3 in [10] provides an exact sequence

$$1 \to H_1(G, \ker \delta) \to G \otimes \ker \delta \xrightarrow{\mu} [G, \ker \delta]_H \to 1.$$
(**)

(i) Suppose $p \neq q$. Proposition 1(i) tells us that $\overline{G} \otimes \overline{H} = 1$. Since G is a p-group and ker δ is a q-group, we have $H_1(G, \ker \delta) = 1$ (see, for instance, [11]). Sequence (**) implies

 $G \otimes ker \ \delta \cong [G, ker \ \delta]_H.$

Similarly,

 $ker \,\partial \otimes H \cong [H, ker \,\partial]_G.$

Since the composite homomorphism

$$[G, \ker \delta]_H \xrightarrow{\cong} G \otimes \ker \delta \to G \otimes H \to H$$

sends $[G, \ker \delta]_H$ injectively into H, the q-group $[G, \ker \delta]_H$ embeds into $G \otimes H$. Similarly, the p-group $[H, \ker \partial]_G$ embeds into $G \otimes H$. Since $p \neq q$, sequence (*) implies the required isomorphism

$$[G, ker \,\delta]_H \times [H, ker \,\partial]_G \cong G \otimes H.$$

(ii) Suppose p = q. The required homomorphism follows from Proposition 1(ii) and the sequences (*) and (**). \Box

(Note that the isomorphism of Theorem 2(i), in fact, holds for any two finite groups G, H with coprime exponents.)

Let N be a normal subgroup in G. Using conjugation actions, we can form the tensor product $N \otimes G$. As explained in [3], there is an action of the group G on the tensor product $N \otimes G$ given by

$${}^{g}(n\otimes g')=({}^{g}n\otimes {}^{g}g')$$

for $g, g' \in G$, $n \in N$. Conversely, an element $\tau \in N \otimes G$ acts on $g \in G$ by ${}^{\tau}g = (\mu \tau)g(\mu \tau)^{-1}$. These actions are compatible and we can use them to form the tensor product $(N \otimes G) \otimes G$. This construction can be iterated to form the tensor product

$$N \otimes^{c+1} G = (((N \otimes G) \otimes G) \cdots \otimes G)$$

of N with c copies of G. (In this notation, $N \otimes^3 G = (N \otimes G) \otimes G$.) Let us define a central series by

$$\gamma_1(N,G) = N,$$

$$\gamma_{i+1}(N,G) = [\gamma_i(N,G),G].$$

There is a canonical surjection $\mu: N \otimes^c G \twoheadrightarrow \gamma_c(N, G)$ which sends a tensor $(((n \otimes g_1) \otimes g_2) \cdots \otimes g_c)$ to the commutator $[[[n, g_1], g_2], \dots, g_c]$.

The following corollary is the basis for the main results of [4, 8]. It is also essential to the proof of Theorem 2 in [7].

Corollary 3. Let N be a normal subgroup of a d-generator p-group G. Suppose that $|\gamma_i(N,G)| = p^{m_i}$ for i = 1, 2, ... Then, for any $c \ge 1$, we have

 $|N \otimes^{c+1} G| \leq p^{m_c d + m_{c-1} d^2 + \dots + m_1 d^c}.$

Proof. For c = 1 the corollary follows from Proposition 1(ii). For arbitrary $i \ge 1$ let us define

$$J_i(N,G) = ker(\mu: N \otimes^i G \to \gamma_i(N,G)).$$

For $c \ge 2$, there is thus an exact sequence

$$J_c(N,G) \otimes G \to (N \otimes^c G) \otimes G \to \gamma_c(N,G) \otimes G \to 1.$$
(***)

Now, G and $J_c(N,G)$ act trivially on each other. Thus, $|J_c(N,G) \otimes G| \leq |J_c(N,G)|^d \leq |N \otimes^c G|$. Also, Proposition 1(ii) implies $|\gamma_c(N,G) \otimes G| \leq p^{m_c d}$. So sequence (* * *) provides the recurrence relation

$$|N \otimes^{c+1} G| \le p^{m_c d} |N \otimes^c G|$$

from which the corollary follows. (Note that this proof does not use the finiteness of G.) \Box

3. A topological application

Suppose that a CW-space X is a union $X = A \cup B$ of two path-connected CWsubspaces A and B whose intersection $C = A \cap B$ is path-connected. Some of the homotopy structure of the space X can be calculated in terms of the homotopy structure of the spaces A, B and C. For instance, van Kampen's theorem on the fundamental group describes $\pi_1 X$ as an amalgamated sum of groups:

 $\pi_1 X \cong \pi_1 A *_{\pi_1 C} \pi_1 B.$

A "two-dimensional analogue" of van Kampen's Theorem is used in [1] to describe the second relative homotopy group $\pi_2(X, C)$ under the hypothesis that the canonical homomorphisms $\pi_1 C \to \pi_1 A$, $\pi_1 C \to \pi_1 B$ are surjective:

$$\pi_2(X,C) \cong \pi_2(A,C) \circ \pi_2(B,C).$$

Here the symbol \circ denotes the construction of the previous section, the groups $\pi_2(A, C), \pi_2(B, C)$ acting on one another via the boundary homomorphisms $\pi_2(A, C) \rightarrow \pi_1 C, \pi_2(B, C) \rightarrow \pi_1 C$ and actions of $\pi_1 C$.

A "three-dimensional analogue" of van Kampen's theorem is used in [3] to describe the triad homotopy group $\pi_3(X, A, B)$ under the hypothesis that the canonical homomorphisms $\pi_1 C \to \pi_1 A$, $\pi_1 C \to \pi_1 B$ are surjective:

$$\pi_3(X,A,B)\cong \pi_2(A,C)\otimes \pi_2(B,C).$$

Using the exact sequences (for $n \ge 1$) (see [13])

$$\rightarrow \pi_n C \rightarrow \pi_n A \rightarrow \pi_n (A, C) \rightarrow \pi_{n-1} C \rightarrow,$$

$$\rightarrow \pi_n C \rightarrow \pi_n B \rightarrow \pi_n (B, C) \rightarrow \pi_{n-1} C \rightarrow,$$

$$\rightarrow \pi_n (B, C) \rightarrow \pi_n (X, A) \rightarrow \pi_n (X, A, B) \rightarrow \pi_{n-1} (B, C) \rightarrow$$

one readily obtains the following bound on $\pi_3 X$.

Proposition 5. Suppose that the canonical homomorphisms $\pi_1 C \rightarrow \pi_1 A, \pi_1 C \rightarrow \pi_1 B$ are surjective. Then

$$|\pi_{3}X| \leq \frac{|\pi_{1}A| \cdot |\pi_{3}A|}{|\pi_{2}A|} \cdot \frac{|\pi_{1}B| \cdot |\pi_{3}B|}{|\pi_{2}B|} \cdot \frac{|\pi_{2}C|^{2}}{|\pi_{1}C|^{2}} \cdot |\pi_{2}(A,C) \circ \pi_{2}(B,C)| \cdot |\pi_{2}(A,C) \otimes \pi_{2}(B,C)|.$$

The bound is attained if, for instance, the homotopy groups π_3A , π_3B , π_2C are all trivial.

We clearly have

 $|\pi_2(A,C) \circ \pi_2(B,C)| \le |\pi_2(A,C)| |\pi_2(B,C)|.$

Thus, Theorem 2 yields an explicit bound on $|\pi_3 X|$ in the case where $\pi_2(A, C)$ and $\pi_2(B, C)$ are known prime-power groups.

4. Computer computations

We now consider all pairs of normal subgroups of the quaternion group, $Q_{16} = \langle a, b | a^{16} = b^8 a^2 = ab^{-1}ab = 1 \rangle$, with actions being conjugations in Q_{16} . Twelve such subgroups exist. Table 1 presents the different actions which arise in this way, by exhibiting the images of the generators of H under the actions of the generators of G. Table 2 lists $|G \otimes H|$ for all pairs of normal subgroups G and H in Q_{16} . Since $G \otimes H \cong H \otimes G$ the table only includes the case $|G| \leq |H|$. We consider two pairs (G, H) and (G', H') to be isomorphic if there is an isomorphism $\phi: GH \to G'H'$ that restricts to isomorphisms $G \stackrel{\cong}{\longrightarrow} G'$, $H \stackrel{\cong}{\longrightarrow} H'$. Since isomorphic pairs yield isomorphic tensor products, the table contains just one entry for each isomorphism class of pairs.

There is a certain asymmetry in the bound of Theorem 2, yet $G \otimes H \cong H \otimes G$. Thus,

Table 1							
The conjugation	actions	of	subgroups	G	on	subgroups	Η

		G															
	Gener- ators	1	a ²	а	b ⁴	a ²	ab ⁴	а	b ⁴	a^2b^2	ab ²	а	<i>b</i> ²	b	ab	a	b
	$x = a^2$	x	x	x	x	x	x	x	x	x	<i>x</i>	x	x	x	x	x	x
	x = a	x	x	x	x	x	x	x	x	x	x	x	x	x^3	<i>x</i> ³	x	<i>x</i> ³
	$x = b^4$	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
	$x = a^2$ $y = ab^4$	x y	x y	x y	x y	x y	x y	x y	x y	x y	x y	x y	x y	x xy	x xy	x y	x xy
	$ \begin{array}{l} x = a \\ y = b^4 \end{array} $	x y	x y	x y	x y	x y	x y	x y	x y	x y	x y	x y	x y	x ³ y	x ³ y	x y	x ³ y
Η	$x = a^2 b^2$	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
	$x = ab^2$	x	x	x	x	x	x	x	x	x	x	x	x	x^5	<i>x</i> ⁵	x	<i>x</i> ⁵
	$x = a$ $y = b^2$	x y	x y	x y	x y	x y	x y	x y	x y	x y	x y	x y	x y	x ³ y	x ³ y	x y	х ³ У
	x = b	x	x	x ⁹	x	x	x ⁹	x ⁹	x	x	x ⁹	x ⁹	x	x	x ⁹	x ⁹	x
	x = ab	x	x	x ⁹	x	x	x ⁹	x ⁹	x	x	x ⁹	x ⁹	x	x ⁹	x	x ⁹	x ⁹
	$ \begin{array}{l} x = a \\ y = b \end{array} $	x y	x y	x x^2y	x y	x y	$x x^2 y$	x $x^2 y$	x y	x Y	x x^2y	$x x^2 y$	x y	x ³ y	x^3 $x^2 y$	$x x^2 y$	x ³ y

Generators G $ G $ Generators H $ H $	$\log_2(G \otimes H)$ \log_2 (bound of Theorem 2)
a^2 2 a^2 2	1 1
a^2 2 a 4	1 1
a^2 2 a^2, ab^4 4	2 2
a^2 2 a, b^4 8	2 2
a^2 2 a^2b^2 8	1 1
a^2 2 a,b^2 16	2 2
a^2 2 b 16	1 1
a^2 2 a, h 32	2 2
	2 2
a A $a^2 ab^4$ A	$\frac{2}{2}$ $\frac{2}{4}$
a 4 a, ab $+$	3 4
a 4 a,b b	$\frac{1}{2}$
a 4 ab 6	2 2
$a 4 a, b^- 10$	
	2 5
a 4 a, b 32	3 4
b^{-} 4 b 10	
b^{*} 4 a, b 32	3 4
a^2, ab^4 4 a^2, ab^4 4	4 4
a^2, ab^4 4 a, b^4 8	4 4
a^2, ab^4 4 a^2b^2 8	2 2
a^2, ab^4 4 a, b^2 16	4 4
a^2, ab^4 4 b 16	2 5
a^2, ab^4 4 a, b 32	3 4
a, b^4 8 a, b^4 8	5 6
a, b^4 8 a^2b^2 8	3 3
a, b^4 8 a, b^2 16	5 6
a, b^4 8 b 16	3 6
a, b^4 8 a, b 32	2 6
a^2b^2 8 a^2b^2 8	3 3
a^2b^2 8 a,b^2 16	4 6
a^2b^2 8 b 16	3 3
a^2b^2 8 a,b 32	4 6
ab^2 8 b 16	3 6
ab^2 8 a, b 32	4 6
a, b^2 16 a, b^2 16	6 8
a, b^2 16 b 16	4 7
$a_{,b}b^2$ 16 $a_{,b}$ 32	2 8
$\frac{16}{b}$ 16 $\frac{16}{b}$ 16	4 4
b 16 ab 16	4 7
h 16 a,h 32	5 8
ah 16 ah 32	5 8
a,b 32 a,b 32	7 10

Table 2 $|G \otimes H|$ for $G, H \leq Q_{16}$

a lower bound may sometimes be obtained by interchanging the roles of G and H. However, the table does not involve such interchanges.

Table 2 was computed using a GAP program based on the algorithm described in [9]. Details of the program may be obtained by e-mailing the authors at graham.ellis@ucg.ie.

References

- R. Brown, Coproducts of crossed P-modules: applications to second homotopy groups and to the homology of groups, Topology 23 (1984) 337–345.
- [2] R. Brown, D.L. Johnson, E.F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987) 177-202.
- [3] R. Brown, J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311-335.
- [4] J. Burns, G. Ellis, Inequalities for Baer invariants of finite groups, Canad. Math. Bull., to appear.
- [5] G. Ellis, The nonabelian tensor product of finite groups is finite, J. Algebra 111 (1987) 203-205.
- [6] G. Ellis, On the tensor square of prime power groups, Arch. Math. 66 (1996) 467-469.
- [7] G. Ellis, On Peiffer central series, Glasgow Math. J., to appear.
- [8] G. Ellis, On groups with a finite nilpotent upper central quotient, submitted.
- [9] G. Ellis, F. Leonard, Computing the Schur multiplier and tensor products of finite groups, Proc. Roy. lrish Acad. A 95 (2) (1995) 137-147.
- [10] D. Guin, Cohomologie non-abeliennes des groups, J. Pure Appl. Algebra 50 (1988) 109-138.
- [11] P. Hilton, U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics vol. 4, Springer, Berlin, 1970.
- [12] N.R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil. Mat. 22 (1) (1991) 63-79.
- [13] G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics vol. 61, Springer, Berlin, 1978.